31 research outputs found

    The Regulation of Ion Homeostasis, Growth, and Biomass Allocation in Date Palm Ex Vitro Plants Depends on the Level of Water Salinity

    Get PDF
    The date palm, a central plant in the fragile oasis ecosystem, is considered one of the fruit species most tolerant to salt stress. However, the tolerance mechanisms involved are yet to be addressed and their evaluation until now was mainly based on heterogenous plant material such as seedlings or limited to in vitro experiment conditions. For these reasons, we propose to deepen our knowledge of the morphological and physiological responses to salt stress using acclimated ex vitro plants resulting from the propagation of a single genotype. The plants were irrigated with 0, 150, 300, or 450 mM NaCl solutions for four months. Our results showed that the influence of water salinity on growth and ion-homeostasis regulation was very dependent on stress levels. The 150 mM NaCl concentration was found to improve dry biomass by about 35%, but at higher salt concentrations (300 and 450 mM) it decreased by 40–65%. The shoot:root dry mass ratio decreased significantly at the 150 mM NaCl water concentration and then increased with increasing water salt concentration. The leaf:root ratio for Na+ and Cl− decreased significantly with increasing water salinity up to a concentration of 300 mM NaCl, and then stabilized with similar values for 300 mM and 450 mM NaCl. In contrast to Na+ and Cl−, leaf K+ content was significantly higher in the leaf than in the root for all salt treatments. Unlike Na+ and K+, Cl− was expelled to the surface of leaves in response to increased water salinity. Overall, date palm plants appear to be more capable of excluding Cl− than Na+ and of changing biomass allocation according to salt-stress level, and their leaves and roots both appear to play an important role in this tolerance strategy.All authors are funded through the Small Research group project from the Deanship of Scientific Research at King Khalid University under research grant number (R.G.P.1/295/43).Peer reviewe

    A Complete Sequence and Transcriptomic Analyses of Date Palm (Phoenix dactylifera L.) Mitochondrial Genome

    Get PDF
    Based on next-generation sequencing data, we assembled the mitochondrial (mt) genome of date palm (Phoenix dactylifera L.) into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp) over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast)-derived (10.3% with respect to the whole genome length) and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower) showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry), and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters–18S-5S rRNA, rps3-rpl16 and nad3-rps12–in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms

    The Complete Chloroplast Genome Sequence of Date Palm (Phoenix dactylifera L.)

    Get PDF
    BACKGROUND: Date palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. CONCLUSIONS: Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts

    Vegetative Growth Dynamic and Its Impact on the Flowering Intensity of the Following Season Depend on Water Availability and Bearing Status of the Olive Tree

    No full text
    A sufficient and mature vegetative growth is an essential condition for production in the following season and consequently affects the alternate bearing (AB) behavior. However, little is known about its interaction with the crop load and water supply. Herein, we studied the effect of different water regimes and bearing status on the vegetative intensity and flush and its consequence on the flowering parameters of the following season. Rainfed (RF) and fully irrigated (FI) treatments were applied for bearing (ON) and non-bearing (OFF) trees of the ‘Zalmati’ olive orchard in south Tunisia during 2018. The water deficit condition (RF) and the high crop load (ON) have caused a similar decrease in the total node number and shoots length by about 65%. Furthermore, the flowering parameters in 2019, especially the percentage of floral buds (i.e., floral induction intensity), were differentially affected by water supply according to the bearing status of the previous season. FI reduced the percentage of floral buds in 2019 by about 37% for OFF trees, while it increased it by more than four times for the ON trees. Concerning the growth flush, the second (i.e., autumnal) flush seems to respond better to water supply than the first (i.e., spring) one, for both vegetative and flowering parameters. The second flush of growth provided 28% of the total vegetative growth but contributed about 35% to the total number of floral buds for RF OFF trees. Besides, FI makes the first and the second flushes contribute equally to total vegetative growth and to the flowering parameters of the following season. On the other hand, the bearing status of the trees does not affect the contribution of each flush to the total vegetative growth

    Vegetative Growth Dynamic and Its Impact on the Flowering Intensity of the Following Season Depend on Water Availability and Bearing Status of the Olive Tree

    No full text
    A sufficient and mature vegetative growth is an essential condition for production in the following season and consequently affects the alternate bearing (AB) behavior. However, little is known about its interaction with the crop load and water supply. Herein, we studied the effect of different water regimes and bearing status on the vegetative intensity and flush and its consequence on the flowering parameters of the following season. Rainfed (RF) and fully irrigated (FI) treatments were applied for bearing (ON) and non-bearing (OFF) trees of the ‘Zalmati’ olive orchard in south Tunisia during 2018. The water deficit condition (RF) and the high crop load (ON) have caused a similar decrease in the total node number and shoots length by about 65%. Furthermore, the flowering parameters in 2019, especially the percentage of floral buds (i.e., floral induction intensity), were differentially affected by water supply according to the bearing status of the previous season. FI reduced the percentage of floral buds in 2019 by about 37% for OFF trees, while it increased it by more than four times for the ON trees. Concerning the growth flush, the second (i.e., autumnal) flush seems to respond better to water supply than the first (i.e., spring) one, for both vegetative and flowering parameters. The second flush of growth provided 28% of the total vegetative growth but contributed about 35% to the total number of floral buds for RF OFF trees. Besides, FI makes the first and the second flushes contribute equally to total vegetative growth and to the flowering parameters of the following season. On the other hand, the bearing status of the trees does not affect the contribution of each flush to the total vegetative growth

    Reliable and relevant qualitative descriptors for evaluating complex architectural traits in olive progenies

    No full text
    Architectural characteristics play an important role in the agronomic performance of fruit tree genotypes. However quantifying such traits in large numbers of individuals represents an important challenge, and little is known regarding their diversity and inheritance. This study evaluates the occurrence, variability, relevance and robustness of visual descriptors, which we propose and test for assessing ten major plant architectural traits in a large number of young olive seedlings and their parents. Our results revealed high phenotypic plant architecture diversity in the studied 825 seedlings from directed crosses, as well as significant parent genotype influence. From ten initially proposed traits, five ('Main vertical axis', 'Preferential distribution of lateral shoots', 'Dominant length of lateral shoots', 'Branch orientation' and 'Branch bending') were found to have the most relevant descriptors for olive seedling architecture based on the high capacity to indicate diversity, strong influence of parent genotype, lack of correlation with each other, and demonstrated value for agronomical performance. All of the descriptors of these five most relevant traits were then combined to generate 105 plant phenotypes, eight of which predominated and showed a clear dependence on parental characteristics. Validity of the results obtained from visual evaluation was verified by their correspondence to quantitative measurements at different stages of analysis. The synthetic characterization of plant-form provides new insights regarding olive seedling description, variability, and parent genotype influence, and represents a significant advance for measuring complex plant architectural traits. © 2012 Elsevier B.V.The work was partly funded by project RTA2008-00033-C02-01, National Institute of Agricultural Research, Spain partially funded by European Regional Development Funds (ERDF).Peer Reviewe

    Floral biology of different mediterranean olive tree varieties growing in northern tunisia

    No full text
    Resumen del trabajo presentado en la 6th International Conference on the Olive Tree and Olive Products, celebrada en Sevilla (España) del 15 al 19 de diciembre de 2018.The presence of both Tunisian and foreign varieties growing together provides particular phytogenetic richness to the INAT (Tunisian National Agronomy Institute) olive germplasm collection. The agronomic performance and genetic plasticity of these varieties in the edaphoclimatic conditions of northern Tunisia, however, require examination. In this study we evaluated flowering, flower quality and the degree of self-pollination, environmentally sensitive parameters which are critical for fruit production, of five foreign varieties (‘Frantoio’, ‘Kalamata’, ‘Oliviera’, ‘Sevillane’ and ‘Sigoise’) and one Tunisian variety (‘Gerboui’). For each variety the date of full bloom, and the length, position, number of nodes and inflorescences of one-yearold shoots were recorded at the flowering season onset. Additionally thirty inflorescences per tree were sampled during full bloom to evaluate flower-quality parameters, including the number of flowers per inflorescence, the percentage of perfect flowers, pistil weight, the number of ovules per ovary and the pollen germination and quantity per flower. Self-pollination was also tested to indicate self-compatibility. All studied parameters showed high variation among the different olive varieties except the proportion of nodes bearing inflorescences. ‘Frantoio’ showed the highest values for the majority of the flower quality parameters, while generally all varieties showed high flower quality and shoot-fertility. The lowest values for the degree of self-compatibility were found in ‘Gerboui’, ‘Kalamata’, ‘Oliviera’ and ‘Sevillane’. The high degree of self-incompatibility found in the majority of foreign cultivars indicates the need to investigate their compatibility with the major Tunisian varieties (‘Chemlali’, ‘Chetoui’ and ‘Meski’) as possible pollinators

    Emerging vector-borne diseases in dromedaries in Tunisia: West Nile, bluetongue, epizootic haemorrhagic disease and Rift Valley fever

    No full text
    A total of 118 sera were collected during 2016 from two groups of dromedaries from Kebili and Medenine governorates in the south of Tunisia. The aim of this study was to provide the first serological investigation of four emerging vector-borne diseases in two groups of dromedaries in Tunisia. Sera were tested by ELISA and serum neutralisation test to identify West Nile virus (WNV), bluetongue virus (BTV), epizootic haemorrhagic disease virus (EHDV) and Rift Valley fever virus (RVFV). In the first group, the seroprevalence for BTV was 4.6%, while in the second group, it was 25.8% for WNV and 9.7% for BTV. Only serotype 1 was detected for BTV in the two groups. No evidence for circulation of RVF and EHD viruses was revealed. Results indicated that dromedaries can be infected with BTV and WNV, suggesting that this species might play a significant role in the epizootiology of these viral diseases in Tunisia and neighbouring countries
    corecore